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RESUMEN: La detección temprana de en-
fermedades en plantas, como el tizón fo-
liar y cenicilla, es esencial para minimizar 
pérdidas económicas y preservar la cali-
dad de los cultivos. Para ello, resulta in-
dispensable contar con métodos de diag-
nóstico que sean precisos, accesibles y 
eficientes. En este contexto, las redes 
neuronales profundas han demostrado un 
gran potencial en el ámbito agrícola, par-
ticularmente en el análisis de imágenes 
foliares para identificar síntomas en eta-
pas iniciales. El presente estudio propone 
el desarrollo de un sistema de clasifica-
ción de enfermedades en hojas de fresa, 
basado en modelos preentrenados de 
redes neuronales convolucionales (CNN), 
específicamente MobileNetV3 e Incep-
tionV3. La metodología incluyó la reco-
lección y preprocesamiento de imáge-
nes, seguidos del entrenamiento, ajuste 
y validación de ambos modelos. El des-
empeño de las redes se evaluó mediante 
métricas estándar como precisión, sen-
sibilidad y especificidad. Los resultados 
obtenidos permiten una comparación de-
tallada entre MobileNetV3 e InceptionV3, 
contribuyendo al desarrollo de herra-
mientas inteligentes para la detección 
eficiente de enfermedades en hojas de 
fresa. Este avance abre la posibilidad de 
implementar soluciones portátiles para el 
diagnóstico en campo, fortaleciendo así 
el enfoque de agricultura inteligente.

PALABRAS CLAVE: agricultura inteli-
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(CNN), clasificación de imágenes, enfer-
medades de la fresa, MobileNetV3-Small, 
InceptionV3.
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ABSTRACT: Early detection of plant diseases, such as 
Leaf Scorch and Powdery Mildew, is essential to minimize 
economic losses and preserve crop quality. In this context, 
deep neural networks have shown great potential in the 
agricultural field, particularly in the analysis of leaf images 
to identify symptoms in early stages. The present study 
proposes the development of a strawberry leaf disease 
classification system based on pretrained convolutional 
neural network (CNN) models, specifically MobileNetV3 
and InceptionV3. The methodology included image collec-
tion and preprocessing, followed by training, tuning, and 
validation of both models. The performance of the networ-
ks was evaluated using standard metrics such as accura-
cy, sensitivity and specificity. The results obtained allow 
a detailed comparison between MobileNetV3 and Incep-
tionV3, contributing to the development of intelligent tools 
for efficient disease detection in strawberry leaves. This 
breakthrough opens the possibility of implementing porta-
ble solutions for in-field diagnostics, thus strengthening the 
smart agriculture approach.

KEYWORDS: intelligent agriculture; convolutional neural 
networks (CNN); image classification; strawberry disea-
ses; MobileNetV3-Small; InceptionV3.

INTRODUCCIÓN
Las fresas representan un cultivo de gran relevancia para la 
agricultura mexicana y desempeñan un papel clave en la eco-
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nomía global, debido a su alta demanda en los merca-
dos internacionales. México se ha posicionado como 
uno de los tres principales exportadores de esta fru-
ta, con ingresos cercanos a los 400 millones de pesos 
en 2020, impulsados principalmente por la producción 
en estados como Michoacán, Baja California, Jalisco y 
Guanajuato [1].

Sin embargo, este crecimiento sostenido se ve ame-
nazado por la presencia de enfermedades y plagas de 
alto impacto, como la cenicilla, Diplocarpon earlianum, 
Tetranychus urticae y Heliothis virescens. Estos agen-
tes no solo comprometen la calidad y el volumen de la 
producción, sino que, en algunos casos, también repre-
sentan riesgos para la salud humana [2].

Frente a este panorama, resulta imprescindible el desa-
rrollo de sistemas eficaces para la detección temprana 
y el monitoreo continuo de problemas fitosanitarios. En 
este contexto, la Agricultura de Precisión (AP) ha ex-
perimentado un notable auge en los últimos años, inte-
grando tecnologías como la robótica, la teledetección, 
el análisis de datos y el procesamiento de imágenes 
para optimizar la gestión de los cultivos [3]. Particular-
mente, el procesamiento de imágenes y el aprendiza-
je automático se han consolidado como herramientas 
eficaces para la detección temprana de plagas y en-
fermedades, permitiendo análisis rápidos, precisos y 
rentables a partir de imágenes de hojas, tallos, flores 
y frutos. Estos métodos, además, posibilitan estimar la 
severidad de una enfermedad comparando las áreas 
afectadas con la totalidad de la planta [4].

No obstante, a pesar de los avances en sensores hipe-
respectrales, su elevado costo limita la adopción por 
parte de pequeños y medianos productores. En este 
sentido, el uso de dispositivos móviles y cámaras con-
vencionales en espectro visible se plantea como una 
alternativa viable y económica para democratizar el ac-
ceso a herramientas de diagnóstico, especialmente en 
regiones rurales con recursos limitados [5].

En la actualidad, la mayoría de los estudios se enfocan 
en diferentes cultivos o emplean arquitecturas costo-
sas en términos computacionales [6], lo cual dificulta su 
implementación en dispositivos móviles. No obstante, 
trabajos recientes muestran la viabilidad de modelos 
ligeros en condiciones reales de campo [7]. En este 
sentido, este trabajo se diferencia al comparar el des-
empeño de MobileNetV3 e InceptionV3 exclusivamen-
te en hojas de fresa, con el propósito de detectar en-
fermedades en una etapa temprana y determinar cuál 
arquitectura resulta más adecuada para su despliegue 
en entornos agrícolas reales.

MATERIAL Y MÉTODOS
Se detalla un planteamiento sistemático de varias eta-
pas clave para llevar a cabo el estudio, que se muestra 
en términos generales en la Figura 1.

Conjunto de datos
El conjunto de datos utilizado en este estudio fue re-
copilado a partir de múltiples fuentes, incluyendo in-
vernaderos locales, campos de cultivo y repositorios 
públicos como Kaggle [8]. Las imágenes provinieron 
principalmente de cámaras digitales convencionales 
y teléfonos móviles, en condiciones variadas de ilumi-
nación natural y artificial, así como con diferencias en 
ángulos de captura. Estas variaciones se mantuvieron 
deliberadamente para simular escenarios reales de 
trabajo en campo.

Figura 1: Método propuesto para la clasificación de enferme-
dades de las hojas de fresa.
Fuente: Elaboración propia.

Fuente: Elaboración propia.

Tabla 1. Cantidad de imágenes obtenidas por fuente. 

 

Tabla 1. Cantidad de imágenes obtenidas por fuente 

Fuente Cantidad de imágenes 

Kaggle  1400 

Invernaderos 150 

Campos de cultivo 168 

Fuente: Elaboración propia 

 Para garantizar diversidad real, se aplicó el algoritmo 
de hashing perceptual, el cual consiste en transformar 
cada imagen en una representación numérica reduci-
da que permite comparar similitudes. Se estableció un 
umbral de distancia de Hamming de 5 bits para deter-
minar duplicados; es decir, si dos imágenes difieren en 
menos de cinco posiciones, una de ellas se elimina. 
Esto permitió depurar imágenes redundantes y asegu-
rar mayor representatividad del conjunto final. Tras la 
consolidación, el dataset quedó conformado por 4,276 
imágenes de hojas de fresa, clasificadas en cinco ca-
tegorías: saludable, tizón foliar, cenicilla, blossom bli-
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ght y tizón angular, con resolución original de 419 x 419 
píxeles. Con el fin de balancear las clases, se empleó 
la librería Augmentor en Python para realizar aumentos 
mediante rotaciones, escalados, giros y variaciones de 
brillo. La Figura 2 muestra ejemplos representativos de 
cada clase. Con el objetivo de mejorar la variabilidad y 
balancear las clases, se empleó la biblioteca Augmen-
tor de Python. A partir de un conjunto inicial de 1,808 
imágenes donde: 700 saludables, 380 con leaf scorch, 
329 con cenicilla, 125 con blossom y 274 con angular 
leaf scorch; fueron aumentadas mediante transforma-
ciones estocásticas como rotaciones, escalados, giros 
y cambios de brillo, equilibrando así cada clase a 700 
imágenes. Estas técnicas ayudan a simular condiciones 
del mundo real y a mejorar la capacidad de generaliza-
ción de los modelos durante el entrenamiento.

MobileNetV3-SMALL
En otras investigaciones [9] se presenta una modifica-
ción de MobileNetV3-small como un modelo de clasifi-
cación capaz de ofrecer un alto rendimiento en dispo-
sitivos con recursos limitados, como teléfonos móviles 
o sistemas embebidos [9].

En particular, MobileNetV3-Small se desarrolló con el 
objetivo de equilibrar precisión y eficiencia compu-
tacional, lo que la convierte en una excelente opción 
para tareas de clasificación de imágenes en tiempo 
real en entornos con capacidad de cómputo restrin-
gida. La Figura 3 muestra de forma esquemática su 
arquitectura. Una comparación entre los modelos 
MobileNetV3-Large y EfficientNet-B0 para la clasifi-
cación de enfermedades en hojas de fresa para su 
implementación en dispositivos con baja capacidad 
de procesamiento y almacenamiento, como sistemas 
embebidos o móviles [10].

Figura 3: Arquitectura de MobileNetV3-Small.
Fuente: Elaboración propia.

Figura 2: Muestras del conjunto de datos separados por ca-
tegoría.
Fuente: Elaboración propia.

Preprocesamiento de datos
La etapa de preprocesamiento incluyó la organización 
sistemática del conjunto de datos, cargando imágenes 
desde directorios etiquetados según la clase corres-
pondiente. Las imágenes, originalmente en formato 
RGB, fueron redimensionadas a 224 x 224 píxeles para 
ajustarse a los requerimientos de entrada de las arqui-
tecturas MobileNetV3 e  InceptionV3. Se empleó la cla-
se ImageDataGenerator de TensorFlow para realizar el 
aumento de datos y cargar las imágenes durante el 
entrenamiento. Entre las transformaciones aplicadas se 
incluyeron rotación, traslación, ajustes de brillo y con-
traste, con el objetivo de incrementar la variabilidad y 
reducir posibles sesgos en la clasificación. El conjunto 
fue dividido con barajado y estratificación en subcon-
juntos de entrenamiento (70%), validación (15%) y prue-
ba (15%), asegurando una distribución representativa de 
las clases. Este enfoque permitió construir un conjunto 
de datos balanceado y representativo, adecuado para 
evaluar la generalización de los modelos en condicio-
nes realistas.

InceptionV3
El modelo InceptionV3 es una red neuronal convolu-
cional profunda ampliamente utilizada en tareas de 
clasificación de imágenes debido a su alta precisión y 
capacidad para aprender representaciones complejas. 
Sin embargo, su entrenamiento desde cero requiere 
recursos computacionales considerables, lo cual limita 
su uso en entornos con capacidades restringidas. 
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para tareas de clasificación multiclase con etiquetas 
enteras. En la ecuación 1 se presenta dicha función:

Ec. (1)

donde L es la pérdida promedio de la Sparse Categori-
cal Crossentropy, N es el número total de muestras en el 
conjunto de datos, y(n) es la etiqueta verdadera (entera) 
de la muestra n, con

es la probabilidad predicha por modelo para la clase co-

rrecta y(n) en la muestra n, y C el número total de clases 

posibles.

RESULTADOS
 Los resultados preliminares muestran diferencias re-
levantes entre ambas arquitecturas. Es importante se-
ñalar que la calidad y condiciones de captura de las 
imágenes influyen parcialmente en el desempeño de 
los modelos, particularmente en clases con síntomas 
leves o condiciones de iluminación desiguales. En la Fi-
gura 5(a) y 5(b) se presentan las curvas de exactitud y 
pérdida correspondientes a las fases de entrenamiento 
y validación del modelo MobileNetV3. De forma simi-
lar, la Figura 6(a) y 6(b) muestra las mismas métricas 
para el modelo InceptionV3. En cuanto al aumento de 
datos, se realizaron experimentos de validación que 
confirmaron que no se produjo un sobreajuste severo. 
El uso de early stopping y la división estratificada de 
los conjuntos (70% entrenamiento, 15% validación, 15% 
prueba) contribuyó a mitigar este riesgo. Sin embargo, 
debe considerarse que, en algunas clases, la propor-
ción de imágenes sintéticas fue elevada, lo que podría 
afectar la capacidad de generalización en escenarios 
totalmente nuevos. 

Para superar esta limitación, se aplica el aprendizaje 
por transferencia [11,12] , utilizando una versión preen-
trenada sobre el conjunto de datos ImageNet. En este 
enfoque, se conservan los pesos de las capas convo-
lucionales y se sustituye la capa densa final, la cual es 
reentrenada con imágenes de hojas de fresa clasifica-
das en cinco categorías: saludable, leaf scorch, cenici-
lla, blossom y angular. La Figura 4 ilustra la arquitectura 
de InceptionV3 utilizada en este estudio.

Figura 4: Arquitectura de InceptionV3.
Fuente: Elaboración propia.

Figura 5. Curvas de exactitud y pérdidas a lo largo de épocas 
de MobileNetV3. (a) Precisión de entrenamiento y validación, 
(b) Pérdida de entrenamiento y validación.
Fuente: Elaboración propia.

Configuración de entorno y entrenamiento
Los modelos fueron entrenados en un entorno Anacon-
da, utilizando Python 3.9.21 en un equipo computacional 
con 32 GB de RAM, 5 GB de memoria de intercambio 
y 5 GB de almacenamiento libre. Aunque no se realiza-
ron modificaciones arquitectónicas, el desempeño de 
los modelos depende en gran medida de contar con 
imágenes bien etiquetadas y preprocesadas, lo que re-
salta la importancia de procesos robustos de curación 
de datos. Se empleó un tamaño de lote de 16 y una 
configuración de early stopping con una paciencia de 
tres épocas para evitar sobreajuste, permitiendo de-
tener el entrenamiento cuando la pérdida de validación 
no mejoraba. El número máximo de épocas fue de 30, 
y se utilizaron generadores de datos para alimentar 
los conjuntos de entrenamiento y validación de forma 
eficiente. Los modelos fueron optimizados con Adam 
(Adaptive Moment Estimation), configurando una tasa 
de aprendizaje de 0.0001. La función de pérdida utiliza-
da fue la sparse categorical crossentropy, adecuada 

(a)

 
(b)

𝐿𝐿 = − 1
𝑁𝑁∑

𝑁𝑁
𝑛𝑛=1 𝑙𝑙𝑙𝑙𝑙𝑙⁡(𝑝̂𝑝𝑦𝑦(𝑛𝑛)

(𝑛𝑛) )⁡,  
 

𝑦𝑦(𝑛𝑛) ∈ {0,1,… , 𝐶𝐶 − 1} ,    𝑝̂𝑝𝑦𝑦(𝑛𝑛)
(𝑛𝑛)  
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Figura 6: Curvas de precisión y pérdidas a lo largo de épocas 
de InceptionV3. (a) Precisión de entrenamiento y validación (b) 
Pérdida de entrenamiento y validación.
Fuente: Elaboración propia.

Figura 7: Matriz de confusión del InceptionV3, en donde 0: An-
gular leaf scorch, 1: Cenicilla, 2: Blossom Blight, 3: Saludable, 
4: leaf scorch
Fuente: Elaboración propia

InceptionV3
La evaluación final del modelo InceptionV3 se llevó a 
cabo utilizando el conjunto de validación, obteniendo 
una precisión (ecuación 2) del 98.18%, lo que indica un 
alto grado de exactitud en sus predicciones. Esto de-
muestra una excelente capacidad de generalización y 
un mínimo sobreajuste por parte del modelo. Asimismo, 
las métricas de recuperación (ecuación 3) y F1-Score 
(ecuación 4) oscilaron entre el 96% y 98% para las dis-
tintas clases, lo cual confirma la eficacia del modelo en 
la clasificación de enfermedades. La precisión evalúa 
qué proporción de las predicciones positivas fue real-
mente correcta; la recuperación mide cuántos de los 
casos positivos reales fueron correctamente identifica-
dos por el modelo; y el F1-score combina ambas mé-
tricas en un solo valor que representa el equilibrio entre 
precisión y recuperación, especialmente útil cuando 
se presentan clases desbalanceadas. En la Figura 7 se 
muestra la matriz de confusión, una herramienta que 

permite visualizar el desempeño del modelo en térmi-
nos de verdaderos positivos, falsos negativos, falsos 
positivos y verdaderos negativos. El modelo Incep-
tionV3 demostró un desempeño sobresaliente, clasifi-
cando correctamente los casos con errores mínimos.

Ec. (2)

Ec. (3)

Ec. (4)

(a)

 
(b)

La Tabla 2 muestra que el modelo InceptionV3 obtuvo 
un rendimiento consistentemente alto en todas las cla-
ses evaluadas, destacando blossom blight y saludable, 
que alcanzaron métricas perfectas. Otras clases como 
cenicilla y leaf scorch lograron F1-scores cercanos al 
97%, mientras que angular leaf scorch obtuvo la puntua-
ción más baja con un respetable 97%.

Fuente: Elaboración propia.

Tabla 2. Resultados por clase para InceptionV3. 
Tabla 2. Resultados por clase para InceptionV3. 

Clase Precisión Recall F1-Score 

Angular leaf scorch 96% 98% 97% 

Cenicilla 98% 100% 99% 

Blossom blight 100% 100% 100% 

Saludable 100% 100% 100 

Leaf scorch 98% 96% 97% 

Fuente: Elaboración propia 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ó𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
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Figura 8: Matriz de confusión del MobileNetV3-Small, en donde 
0: Angular leaf scorch, 1: Cenicilla, 2: Blossom Blight, 3: Salu-
dable, 4: leaf scorch.
Fuente: Elaboración propia.

MobileNetV3-Small
La evaluación final de MobileNetV3- Small se realizó 
con el conjunto de validación y arrojó una exactitud del 
82% durante el entrenamiento. Este modelo arrojó por-
centajes inferiores para puntuación F1: 86%, recupera-
ción: 94% y precisión: 91%. En la Figura 8 se demuestra 
un mayor error de clasificación especialmente en la 
clase de leaf scorch, seguido de angular leaf scorch. 

La Tabla 3 revela que MobileNetV3-Small presentó 
una mayor variabilidad en el rendimiento entre clases. 
La clase Saludable mostró una disminución notable en 
comparación con InceptionV3, y angular leaf scorch 
obtuvo el F1-score más bajo de todos los casos eva-
luados, con 84%. Esta caída podría explicarse por la 
similitud visual con otras enfermedades y la menor ca-
pacidad de representación del modelo.

4 resume los promedios generales de precisión, recu-
peración y F1-score, permitiendo comparar globalmen-
te el desempeño de ambos modelos.

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Tabla 3. Resultados por clase para MobileNetV3-Small. 

Tabla 4. Resultados globales entre InceptionV3 y MobileNe-
tV3-Small.

Tabla 3. Resultados por clase para MobileNetV3-Small. 

Clase Precisión Recall F1-Score 

Angular leaf scorch 90% 93% 85% 

Cenicilla 92% 94% 87% 

Blossom blight 93% 96% 88% 

Saludable 89% 95% 86% 

Leaf scorch 91% 92% 84% 

 

Fuente: Elaboración propia 

 

Tabla 4. Resultados globales entre InceptionV3 y MobileNetV3-Small 

Modelo Exactitud Precisión Recall F1-Score 

InceptionV3 98.18% 98% 98% 98.7% 

MobileNetV3-Small 82% 91% 94% 86% 

 

Fuente: Elaboración propia 

 

Estos resultados preliminares reflejan las característi-
cas de cada arquitectura: InceptionV3, más profunda y 
compleja, logra una mejor generalización, mientras que 
MobileNetV3-Small, optimizado para eficiencia, sacrifi-
ca precisión en clases visualmente similares. La Tabla 

CONCLUSIONES
El presente estudio demuestra que el uso de aprendi-
zaje por transferencia con arquitecturas como Incep-
tionV3 y MobileNetV3-Small es una estrategia eficaz 
para la clasificación automática de enfermedades en 
hojas de fresa. Los resultados obtenidos evidencian 
que es posible desarrollar modelos precisos, eficien-
tes y adaptables, adecuados para diferentes contextos 
agrícolas según las restricciones técnicas del entorno.
En este trabajo, las imágenes provinieron deliberada-
mente de dispositivos móviles, con variaciones en ángu-
los de captura y en condiciones de iluminación natural 
y artificial, con el objetivo de simular un entorno real de 
uso. Un aspecto relevante a explorar en trabajos pos-
teriores es el impacto específico de estos parámetros 
en los resultados, ya que conocer esta influencia per-
mitiría anticipar la factibilidad de integrar los modelos 
en dispositivos concretos y bajo condiciones determi-
nadas de operación.

No obstante, el estudio presenta algunas limitaciones: el 
conjunto de datos, aunque representativo, sigue siendo 
relativamente pequeño; la dependencia de la calidad y 
el ángulo de captura puede afectar la robustez en es-
cenarios no controlados; y el aumento intensivo de da-
tos en ciertas clases plantea la necesidad de validar la 
generalización en conjuntos externos no aumentados.

Como trabajo futuro, se plantea la implementación de 
estos modelos en dispositivos móviles, aplicando técni-
cas de cuantización y poda de parámetros para reducir 
su tamaño. Asimismo, se propone ampliar el dataset 
con nuevas imágenes de enfermedades capturadas en 
condiciones diversas y emplear técnicas de aumento 
avanzadas, como modificaciones cromáticas o simula-
ciones de ruido de campo, para mejorar la capacidad 
de generalización.
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